Whole Earth Forecaster    Home
Economics   |   Weather   |   Behavior   |    Natural Disasters   |   The Environment
Evidence   |   Bibliography   |   Products    |  The Trading Room   |    The Berg Timer Method   |   Contact

The Environment
If the observation of the amount of heat the sun sends the earth is among the most important and difficult in astronomical physics, it may also be termed the fundamental problem of meteorology, nearly all whose phenomena would become predictable, if we knew both the original quantity and kind of this heat.

Samuel Pierpont Langley (1834-1906), Report of the Mount Whitney Expedition. Quoted in Abbot, 1958, p 17.  Secretary of Smithsonian Institute.  Langley's chief scientific interest was the sun and its effect on the weather, and believed that all life and activity on the Earth were made possible by the sun's radiation. In 1878 he invented the bolometer, a radiant-heat detector that is sensitive to temperature of one hundred-thousandth of a degree Celsius.

Solar Activity  

2011-2012 Total Solar Flares and Berg Timer 
See below the Berg Timer compared to total solar flares for 2011, 2012, 2013.  Solar flares are most probable during the low BT points just before and after strong BT.  This is consistent with the study above.
Microsoft Excel Chart   Microsoft Excel Chart
See above the major flare events occurring just before and after the strongest BT days in 2013, late April, late June, three in August, mid October, early November, early January, etc.  The strongest daily BT of 2013 was on November 8.  The year's first Winter storm crosses U.S. Nov. 5 to 10.  Strongest solar flare of the year on Nov. 5.  Strongest Typhoon ever recorded on Nov. 7.

On January 7, 2014 a massive solar flare occurred immediately after two very strong Berg Timer values.
"A massive solar flare erupted from the sun on Tuesday (Jan. 7, ), rising up from what appears to be one of the largest sunspot groups seen on the star's surface in a decade, NASA officials say."  source: www.space.com.  

Flare and Geomagnetic data source:  ftp://ftp.swpc.noaa.gov/pub/indices/old_indices/  

2005 Solar Flares
Below are Total Daily solar flares for 2005 compared to the Berg Timer.  The three strongest flare periods occurred within nine days of the three strongest BT dates:  
BT=13 on Jan 21, flares peaked Jan 15  --  within six days
BT=11 on July 20, flares peaked July 13  --  within seven days
BT=11 on Aug 31, flares peaked Sep 9  --  within nine days
Microsoft Excel Chart
Data sources:  http://www.sec.noaa.gov/weekly/index.html  and   http://www.sec.noaa.gov/ftpdir/indices/old_indices/

The Sun Affects Weather, Geophysics, Behavior 
Solar flares emit electron particles.  These electrons interact with Earth's magnetic field and atmosphere causing weather, geophysical and behavioral changes.  There are various theories explaining the mechanics of this transition.  The strongest theories are that charged particles from the sun affect Earth's magnetic field and increase atmospheric nucleation which then affects cloud formation and thus the weather.
Below are the average number of electron particles (greater than 2 million electron volts) occurring on each day before and after the Berg Timer is equal to or greater than 7 strength.  Electrons increase just before and after BT => 7.  This demonstrates the same "before and after BT =7" profile of the daily indices presented on the Weather, Behavior and Natural Disaster pages.  The strong increases in electron fluence just before and after BT =7 matches the before and after BT =7 increases in temperature, precipitation, lightning, wildfires, dust storms, hail, flood, wind speed, earthquakes, tsunamis, volcanoes, assaults, aircraft fatalities, railroad injuries, auto accidents, fire injuries, and asthma episodes.  It looks like electron fluence is the causal factor, or at least one of the causal factors, accounting for the solar effect on weather, geophysics and behavior.
Data source:  ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SATELLITE_ENVIRONMENT/ELECTRONS/
Data source:  ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/

Microsoft Excel Chart     
Another proof that the Berg Timer is able to forecast Earth atmospheric changes is BT's correlation to atmospheric angular momentum. 

BT affects solar activity which then affects atmospheric circulations which then have an effect on Earth's angular momentum (the angular momentum of any object in motion is always constant unless its equilibrium is changed or if it's affected by outside influences), which then affects ocean circulation.

Below are compared long-term Earth's Angular Momentum and the Berg Timer (with 12 month lag) from Jan 1958 through April 2012.

My opinion is that the changes brought on by BT toward astronomical tides affects Earth atmospheric circulation and, thus, the Earth's rotation rate, which then affects ocean currents, and, thus, El Nino.

High BT affects solar activity causing Westerly Pacific equatorial winds to increase in speed.  These high speed winds induce a slowing of Earth rotation since it is the principle of angular momentum that any change in one factor has to be compensated for in another factor --- high winds slow down Earth rotation.  Thus high BT correlates with high AM.  
Note the major peaks in both BT and AM in 1983, one of the largest El Nino events in history, accurately forecasted by BT.  High speed Pacific westerly winds cause El Nino by blowing warm ocean water eastward from the westward Pacific to the eastern Pacific.  See the El Nino study for Berg Timer/El Nino correlation charts.
Microsoft Excel Chart
Data source:  http://www.cdc.noaa.gov/ClimateIndices/    
More information:  http://www.geotimes.org/jan03/NN_nino.html  

BT Accurately Forecasted Famous Sunspots' Maunder Minimum
The Maunder Minimum was a very unusual period for solar activity.  It was a period coinciding with very cold temperatures in Europe dubbed `The Little Ice Age'.  Very few sunspots were seen during those years.  A similar low sunspot period called the 'Dalton Minimum' occurred in the early 1800's also coinciding with colder than normal weather in Europe.  But the Maunder Minimum was the longest and weakest solar activity of the sun known to us and is one of the greatest mysteries of solar physics.
Comparing BT to sunspots I discovered some amazing things.  
I found that the Rate Of Change of the yearly Berg Timer correlates positively with the Maunder Minimum and Dalton Minimum periods of sunspot activity and that these two low ROC BT periods are the two longest during the 520 years studied with BT during the Maunder Minimum being the longest and lowest period of BT ever.  Wow!

It's interesting that during the European "Little Ice Age" caused by low solar activity the foundation was being grown which produced the most valuable violins in history.  The Stradivarius violin was made during the late 1600's and early 1700's just after this cool period.  "Cool temperatures caused slow tree growth with consistent density with relatively low variation in the apparent growth patterns of the trees that produced this wood.  Thus, how solar activity produced the highest quality violins in history"*.
(*from Stoel, Berend C.; Borman, Terry M (2008). Grama, Ananth, ed. "A Comparison of Wood Density between Classical Cremonese and Modern Violins". PLoS ONE. 3 (7): e2554. doi:10.1371/journal.pone.0002554. PMC 2438473Freely accessible. PMID 18596937. Retrieved 2008-07-04. open access publication).

Sunspot image created by Rober A. Rohde, www.globalwarmingart.com/wiki/file:Sunspot_Numbers_png

Furthermore, lending interest and value to the possible causal relationship between heliocentric planetary positions and solar activity, is the fact that this correlation fits best when the BT is lagged 22 years.  This is significant because the sun takes 22 years to complete each of its sunspot polarity reverses.  For two of the longest low periods of BT to coincide with the same low periods of sunspots adds to the evidence that there's a mechanical link between planetary configurations, as represented by BT, and solar activity since it involves the 22 year sunspot cycle.
These two BT minimums and other shorter low BT periods that correlate with low sunspot periods are marked with semi-circles in the chart above.
This finding lends support for my body of work relating BT to solar flares, weather, and other environmental indices of much shorter time frames which have been published on my website over the last 30 some years.
It's my belief that the mechanism for this planetary position/solar activity link is electromagnetic in nature, much like the mechanics of a simple electric motor.
I believe the solar system is acting like a huge generator with the sun at the center being the magnetic rotor and the planets outside acting as the coil.  The sun spins like a motor's rotor inducing electric current through the solar system by way of the planetary bodies, themselves conducting and propagating current.
Thus, the sun's output varies depending upon the placement of the planets.  That's what one would expect for a motor with several coils (the planets) that are moving around a rotor, the sun.
For the planets and the sun coinciding with their lowest and longest low activity periods, the planets and the sun must be electromagnetically connected.  Either that, or it's a huge coincidence.
Just as most of the planets have their own internal magnetic fields propagated by their own core's dynamo effect, so to does the sun.  It looks like the sun is doing its own thing with regular 11 and 22 year sunspot cycles generated by its own internal dynamo.  But then, once in a while, when the planets are in a sufficiently weak configuration, they cause the sun to lose the ability to propagate current through the solar system (via the interplanetary magnetic field), causing these low solar sunspot states.
Thus, planetary configurations, in my opinion, influence the sun's activity in a feedback, from the outside kind of way while the sun still maintains, for the most part, its own internal 11 and 22 year rhythms.  And so too with most of the planets that have varying degrees of a magnetic field of their own.  They are influenced by the sun's field and also have their own fields.  The planets and the sun are both influenced and influential of each other at once.

Instructions for calculating the Berg Timer is available on The Berg Timer page.

Below are compared the power output of Earth's North Pole Aurora and the Berg Timer for 2004.
Microsoft Excel Chart
The NOAA POES Hemispheric Power Data lists provide information about the estimated power in gigawatts deposited in the polar regions by energetic particles during transits over the poles by the NOAA POES (formerly called TIROS) satellites.  Power output increases just before and after high BT.
Below is shown the profile for this power output.  It compares similarly to geomagnetism as is shown on the home page near the bottom.
Data source:  http://legacy-www.swpc.noaa.gov/ftpdir/lists/hpi/

Global Ozone   
Below are compared total monthly avg global ozone (60North to 60South Latitude) in Dobson Units and the 7-month Berg Timer.
Microsoft Excel Chart
This discovery goes way back to 1988 when I first published this in WEF and also presented it at the 'Foundation For The Study Of Cycles Symposium' of that year.  Since ozone is produced by sunlight this is not an unexpected finding, given BT's correlation to solar activity.
There are two basic schools of thinking with regard to why our ozone layer has been decreasing.  On one side are the chemists who say that ozone is decreasing because of CFC's in our atmosphere.  On the other side are the dynamicists who say that ozone depletion is part of a natural atmospheric cycle.  This is a hot topic because environmentalists want stricter controls on chemical companies.
The correlation above sheds some light on this controversy.  It may in fact substantiate the dynamicists' point of view that the ozone decrease scare of 1982-83 was a natural phenomenon as indicated by the remarkable similarity between BT and ozone.
Data source:  NOAA ozone.

Below are compared the yearly Berg Timer (Jun to Sep each year) and Summer Monsoon in India.
Microsoft Excel Chart
Indian Monsoon is directly related to the strength of the Southern Oscillation Index.  Low Summer BT = High India Monsoon Precipitation.
Data source:  IRI Data Library.
website:  http://ingrid.ldgo.columbia.edu/SOURCES/.Indices/.india/.rainfall/T+exch+table-+text+text+skipanyNaN+-table+.html

El Nino
Below are compared the monthly Southern Oscillation Index and 2-yr Berg Timer (inverted) since 1955 with forecast through 2029.  BT has been lagged two months for a more precise fit.  High BT = High probability of El Nino.

A low SOI is indicative of El Nino (equatorial Pacific ocean warming).  A high SOI is indicative of La Nina (equatorial Pacific ocean cooling).  High BT indicates El Nino and La Nina when BT is low.  Most noteworthy is the very strong and unanticipated El Nino of 1983 which was accurately forecasted by the Berg Timer.  Low BT = High India Monsoon and Australian drought (see Monsoon chart immediately above this section).

Below is SOI compared to the Berg Timer.  BT exactly hit the high in November, 2008.  Then, it correctly forecasted the decline through to early 2010 correctly forecasting the 2010 El Nino, then the up trend to December 2011, correctly forecasted the latest La Nina.  Shown is the BT forecast for SOI through 2019.  BT forecasts movement toward El Nino through to late 2012.  BT can be forecasted infinitely forward because it's based on planetary motion and does not change.  

This powerful correlation gives credence to a strong natural connection between astronomical tides and our oceans.  The mechanism is unproven.  There are several theories.  My opinion is that it might be due to BT's effect on atmospheric angular momentum.  The changes brought on by astronomical tides affects Earth atmospheric circulation and, thus, the Earth's rotation rate, which then affects ocean currents, and, thus, El Nino.

There are many weather-related uses for knowing when El Nino/La Nina will occur.  A very human, practical application of being able to predict the occurrance of malaria epidemics by knowing when El Nino will occur is provided in the following scientific study:
"A statistically significant relationship was found between El Niño and malaria epidemics in Colombia, Guyana, Peru, and Venezuela. We demonstrate that flooding engenders malaria epidemics in the dry coastal region of northern Peru, while droughts favor the development of epidemics in Colombia and Guyana, and epidemics lag a drought by 1 year in Venezuela."
The El Niño Southern Oscillation and malaria epidemics in South America, Int J Biometeorol (2002) 46: 81-89, Alexandre S. Gagnon1, Karen E. Smoyer-Tomic2, and Andrew B. G. Bush2

Data source:  Tahiti - Darwin Anomaly  http://www.cpc.ncep.noaa.gov/data/indices/soi
Other Data source:  http://www.cgd.ucar.edu/cas/catalog/climind/SOI.signal.ascii

Mr. Berg,
  Thank you for sharing the Berg Timer method of forecasting El Nino and other phenomena. I will be interested to see how it performs as a prognostic tool for evolution of the Southern Oscillation Index during the next few years.  This is very useful information. Thank you again for sharing.
L.R.  May 14, 2012.  

Thank you for your response. It looks like La Nina increasing slightly in 2013 peaking Jan 2014, then tendency towards El Nino all of 2014, ending Jan 2015.  Tendency toward La Nina from Jan 2015 through to Jan 2017.  Then toward El Nino through to the end of 2017.  Toward La Nina from Jan 2018 to Jan 2019.
Larry Berg, May 22, 2012.

Water Quality   
Below are compared Precipitation, Water Quality (Chloramines) and Berg Timer for Tucson Arizona during the Summer of 2000.
Microsoft Excel Chart
BT can forecast daily precipitation as provided on the Precipitation page.  When BT is "0" in the above chart, precipitation was most probable in Arizona.  Precipitation caused Chloramine levels to immediately drop after a rain.  So BT is able to forecast water quality everywhere where water quality is affected by rainfall which includes all fresh water sources like lakes, rivers and streams.  Low BT = peaking Chloramine levels.
Data sources:  http://www.ci.tucson.az.us/water/water_quality/intro_to_wq/ambassador/ambassador_reports/Bopp.pdf
and www.weatherunderground.com

Snow Depth - North Hemisphere & Eurasia   
Below are compared yearly snow cover in the Northern Hemisphere, Eurasia and North America and yearly Berg Timer inverted.  When BT is low, snow cover is high.  Very good correlation here.  The BT and Eurasia correlation is nearly perfect.
Microsoft Excel Chart
Data source:  http://www.cpc.ncep.noaa.gov/data/snow/

Snow Frequency - Estonia   
Below are compared number of days of snow each year in Estonia and the 2 year Berg Timer (inverted) from 1922 to 1994.
Microsoft Excel Chart
Low BT = high snow frequency.
Data source: http://nsidc.org/data/g01174.html

website hit counter